POSITIONS AND AREAS OF SUN SPOTS-Continued | | East | | н | eliograp | hic | A | rea | Total
area
for | |--|---------|----------|--------------------|----------------------|-----------------|------------|-------|----------------------| | Date | civil t | | Diff.
long. | Longi-
tude | Lati-
tude | Spot | Group | each
day | | 1933 | h. | m. | ۰ | | | | | | | Feb. 10 (Naval Observatory) | "iı | | +41.0 | 301.0 | +13.0 | | 710 | | | Feb. 11 (Naval Observatory) | 111 | 0 | +69.0
+56.0 | 329. 0
303. 0 | $+9.0 \\ +13.0$ | 62 | 679 | 772
679 | | Feb. 12 (Naval Observatory) | 12 | 14 | +70.0 | 303. 1 | +13.0 | | 556 | 556 | | Feb. 13 (Perkins Observatory) | 12 | 30 | +86.0 | 305.8 | +5.0 | | 125 | 125 | | Feb. 14 (Mount Wilson) | 14 | 10 | -57.0 | 148.7 | +1.0 | l - | 4 | 4 | | Feb. 15 (Mount Wilson) | 17 | 35 | -41.0 | | +1.0 | | 3 | 3 | | Feb. 16 (Naval Observatory) | 11 | 29 | | Vo spots | | | | | | Feb. 17 (Mount Wilson) | 12 | 30 | | √o spots | | | | | | Feb. 18 (Naval Observatory) | 12 | 22 | | No spots | | | | | | Feb. 19 (Naval Observatory) | 11 | 24 | | Vo apots | | | | | | Feb. 20 (Perkins Observatory) | 12 | 30 | | To spots | | | | | | Feb. 21 (Naval Observatory) | 10 | 51 | | o spots | | | | | | Feb. 22 (Naval Observatory)
Feb. 23 (Naval Observatory) | 11 | 10
18 | | o spots | | | | | | Feb. 24 (Naval Observatory) | ii | 15 | | Vo spots
Vo spots | | | | | | Feb. 25 (Perkins Observatory) | 15 | 35 | | vo spois
Vo spots | | | | - | | Feb. 26 (Naval Observatory) | 13 | 4 | | No spots | | | | | | Feb. 27 (Naval Observatory) | lii | 40 | -63.0 ¹ | | +7.0 | 31 | | 31 | | Feb. 28 (Naval Observatory) | lii | 29 | -72.0 | | +16.0 | 123 | | 123 | | | | | | 1 7.0 | , _3, 0 | | | | | Mean daily area for February | | | | | | | | 437 | | | | | | 1 | | 1 | | | ### PROVISIONAL SUN-SPOT RELATIVE NUMBERS FOR FEBRUARY, 1933 [Dependent alone on observations at Zurich and its station at Arosa] [Data furnished through the courtesy of Prof. W. Brunner, University of Zurich, Switzerland] | February
1933 | Relative
numbers | February
1933 | Relative
numbers | February
1933 | Relative
numbers | |------------------------|--------------------------------|----------------------------|-----------------------|----------------------------|---| | 1 | ad 45
67
a 62 | 11
12
13
14
15 | 16
11
8
0 | 21
22
23
24
25 | 0
0
0
0 | | 6
7
8
9
10 | b 69
b 80
53
46
32 | 16
17
18
19
20 | 0
0
0
0
0 | 26
27
28 | $\begin{array}{c} 0 \\ 8 \\ d \ 14 \end{array}$ | Mean: 25 days=20.4. a = Passage of an average-sized group through the central meridian. b = Passage of a large group or spot through the central meridian. c = New formation of a center of activity: E. on the eastern part of the sun's disk; W, on the western part; M, in the central zone. d = Entrance of a large or average-sized center of activity on the east limb. ## AEROLOGICAL OBSERVATIONS [Aerological Division, W. R. Gregg, in charge] By L. T. SAMUELS Free-air temperatures during February were considerably below normal at the northern stations with the largest departures occurring at Ellendale. Temperatures at the southern stations averaged above normal with the largest departures at Atlanta. Table 1 shows that, contrary to the usual inverse relationship between the monthly temperature and relative humidity departures, this relationship was direct at most stations. Under such conditions there often is found a correlation between the monthly precipitation and relative humidity departures. Such a relationship was strikingly apparent at those stations having temperature and relative humidity departures of the same sign, e.g., Chicago, -0.92 in.; Atlanta, +0.87 in.; Omaha, -0.64 in.; Cleveland, -0.52in.; and Dallas, +0.34 in. As would be expected from the fact that the normal latitudinal temperature gradient was intensified by the super-normal temperatures over the south and subnormal temperatures over the north, the resultant wind velocities for the month were considerably above normal. Resultant free-air wind directions were close to normal over most of the country. The greatest deviations occurred over the north Pacific States where the normal southwesterly component was replaced by one from the northwest. Table 1.—Free-air temperatures and relative humidities during February 1933 ## TEMPERATURE (°C.) | 43444-3- (4) | Atlant
(303 m | ta, Ga.
eters) ¹ | Boston,
Mass.
(6 meters) ² | | Chicago, Ill.
(187 meters) ³ | | Cleveland,
Ohio
(246 meters) ³ | | Dallas, Tex.
(146 meters) 4 | | Ellendale,
N.Dak.
(444 meters) | | Omaha, Nebr.
(300 meters) ⁵ | | San Diego,
Calif.
(9 meters) ⁶ | | Washington,
D.C.
(2 meters) 6 | | |-----------------------------|---|---|--|-----------------------|--|---|--|--|--|--|---|--|---|--|---|------------------------------|---|--| | Altitude (meters)
m.s.l. | Mean | Depar-
ture
from
normal | Mean | Departure from normal | Mean | Departure from normal | Mean | Departure from normal | Mean | Depar-
ture
from
normal | Mean | Depar-
ture
from
normal | Mean | Depar-
ture
from
normal | Mean | Departure from normal | Mean | Departure from normal | | Surface | 5. 4
5. 9
5. 9
5. 8
4. 5
2. 7
-5. 4
-12. 1 | (7)
(7)
0
+1.8
+2.4
+3.0
+3.4
+3.2
+2.1 | -0.6
-4.0
-5.4
-7.1
-8.9
-11.0
-13.3
-19.0
-26.3 | | -6.5
-6.2
-6.8
-8.0
-9.3
-11.6
-14.4
-19.3
-25.7 | (7)
-3.0
-3.2
-3.0
-3.4
-3.8
-2.8
-2.7 | -3.4
-4.1
-6.4
-7.6
-8.8
-10.8
-13.4
-19.1
-26.2 | (7)
(7)
-2.6
-2.8
-2.5
-2.6
-2.8
-2.6
-3.2 | 4. 2
5. 3
5. 6
5. 2
4. 7
2. 3
1
-5. 5
-12. 4 | (7)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1 | -12.1
-12.3
-11.5
-12.4
-14.1
-16.9
-19.3 | -2.4
-2.6
-2.9
-4.3
-4.6
-5.1
-4.8 | -6.0
-6.1
-4.1
-4.4
-6.4
-8.7
-11.4
-17.6
-23.9 | (7)
(7)
-0.7
-1.4
-2.1
-2.2
-2.3
-2.9
-2.4 | 10. 1
10. 5
8. 8
4. 3 | -2.5
-1.3
-1.4
-1.1 | -0
-3
-4
-2.9
-6.8
-11.2 | -1.7
7
+.2
+.6
+.8
+2.8 | ## RELATIVE HUMIDITY (PERCENT) | Surface
500 | 82
80
70
64
62 | (7)
(7)
+20
+14
+11
+11 | 68 | 78 (7)
72 (7)
64 —
59 —
52 —
48 — | 3 62
5 55
8 50 | -1
0
-2
-6 | 82
74
61
54
47
46 | (7)
(7)
+2
+2
0
+2 | 76
75
68
65
64
65 | -5
-5
-2
+3
+5
+6 | 45
41 | (7)
(7)
-10
-8
-8
-11 | 40 | -1
-3
-4 | 71
62
56
52 | -1 | |-------------------------|----------------------------|--|----------------|--|----------------------|---------------------|----------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------|--------------------------------------|----|----------------|----------------------|----| | 3,000
4,000
5,000 | 54 | +9
+8
+3 | 54
51
49 | 47 -1
47 -1
47 -1 | 0 50 | -7 | 45
41
40 | +3
+5
+8 | 60 | | 41
45
41 | -11
-5
-9 | 30 | —1
 | 52
54 | +3 | Weather Bureau airplane observations made near 5 a.m.; Navy airplane observations near 7 a.m.; Ellendale kite observations near 9 a.m. (seventy-fifth meridian time). ¹ Temperature and humidity departures based on normals of Due West, S.C. ² Airplane observations made by Massachusetts Institute of Technology. ³ Temperature and humidity departures based on normals of Royal Center, Ind. ⁴ Temperature departures based on normals determined by interpolating between those of Groesbeck, Tex., and Broken Arrow, Okla. Humidity departures based on normals of Groesbeck, Tex. ⁴ Temperature and humidity departures based on normals of Drexel, Nebr. ⁵ New less retrieves Revail and followed the state of o Table 2.—Free-air resultant winds (meters per second) based on pilot balloon observations made near 7 a.m. (E.S.T.) during February 1933 [Wind from N=380°; E=90°, etc.] | Altitude (meters) | que | (1,551 | Atla
G
(309 m | | Bism
N.1
(518 n | | Broville,
(12 m | Tex. | V | ngton,
t.
neters) | 1 77 | yo.
373 | Chic
II
(192 m | | Cleve
Ol
(245 n | nio | Dalla
(154 n | | Ha:
M:
(762 n | vre,
ont.
neters) | Jack
ville,
(14 m | Fla. | Key 7
F)
(11 m | West,
la.
eters) | |-----------------------------|--|--|--|---|---|--|---------------------------------------|--|---|--|--|---|--|--|--|--|--|--|--|---|---|---|---|---| | Altitude (meters)
m.s.l. | Direction | Velocity | Surface | 310
291 | 1. 2
3. 3
5. 9 | 320
325
273
273
284
276 | 1. 6
1. 4
4. 9
8. 7
11. 3
9. 0 | 93
293
298
292
290 | 2. 2
10. 5
12. 8
13. 3
13. 9 | 89
123
163
218
238
239 | 0. 6
3. 8
3. 0
3. 0
5. 3
4. 1 | 222
252
281
283
305
289 | 1. 7
6. 0
7. 0
9. 6
11. 6
12. 2 | 273
273
272
277 | 5. 8
8. 3
13. 9 | 276
275
280
273
279
293 | 2. 3
5. 7
9. 4
10. 3
12. 3
14. 8 | 245
256
266
269
271
273 | 3. 6
7. 2
11. 0
12. 5
14. 7
16. 9 | 257
349
283
273
283
281 | 0. 2
. 1
3. 3
5. 9
9. 2
13. 1 | 242
264
282
298
293 | 7. 6
12. 0
13. 4
13. 3 | 343
34
279
277
274
271 | 1. 6
. 3
2. 0
7. 3
9. 1
10. 6 | 93
114
144
167
203
214 | 2. 2
4. 5
4. 7
3. 2
2. 8
3. 2 | | 3,000
4,000
5,000 | 282
274
264 | 9. 1
14. 5
14. 7 | 302 | 8. 6 | 283 | 12. 4 | 238 | 7. 6 | | | 292
285 | 16. 2
16. 0 | 274 | 11, 8 | 287 | 16. 4 | 273 | 17. 0 | 287 | 13. 2 | | | 216
265 | 4, 8
4, 5 | | Altitude (meters) | geles, | An-
Calif.
neters) | Med
Or
(410 m | ford,
eg
neters) | Mem
Tei
(83 m | nn. | New
leans
(25 m | , La. | Oakl
Ca
(8 me | lif. | Oklal
City,
(402 m | Okla. | Ome
Ne
(306 m | br. | Photo Art (356 m | enix,
iz.
ieters) | Salt
City,
(1,2
met | Utah
294 | Sault
Ma
Mi
(198 n | rie,
ch. | Seat
Wa
(14 m | ish. | ton,
(10 m | hing-
D.C.
eters) | | m. ŝ. l. | Direction | Velocity | Surface | 343
19
29
355
338
330
337
338 | 1. 4
1. 4
2. 1
2. 8
4. 1
6. 4
6. 7
5. 7 | 290
330
231
252
285
322
330
333 | 0.6
.6
1.0
3.5
4.5
7.9
10.4
13.1 | 277
239
251
260
272
276
283 | 0. 5
2. 3
3. 9
6. 7
9. 4
12. 0
13. 8 | 37
57
291
264
258 | 1. 8
2. 4
1. 7
3. 6
5. 8 | 28
358
359
345
345
340
335
319 | 1.8
3.6
6.6
6.7
7.4
9.0
9.1
9.7 | 308
213
260
270
275
273
275
270 | 0. 7
1. 0
4. 6
6. 4
8. 8
10. 2
13. 0
15. 9 | 233
241
272
278
281
283
282
278 | 0. 7
2. 9
7. 0
9. 5
10. 8
12. 7
13. 3
13. 2 | 89
45
38
241
264
270
270
282
282 | 0. 3
1. 0
1. 8
. 5
2. 4
3. 9
5. 5
10. 0
7. 1 | 178
189
224
273
284
294 | 1, 9
3, 7
3, 2
4, 8
6, 8
7, 7 | 285
275
282
273
288
273 | 1. 0
3. 3
6. 0
7. 2
9. 9
11. 8 | 148
215
269
295
302
327
329 | 2. 0
3. 9
3. 3
3. 5
5. 3
6. 6
10. 6 | 275
274
290
294
288
286
282 | 1. 9
7. 2
9. 9
12. 1
14. 3
14. 3 | # RIVERS AND FLOODS By Montrose W. Hayes [In charge River and Flood Division] In February 1933 floods occurred in Michigan, the South Atlantic, Gulf, and Ohio Valley States, and in Oregon and Idaho. Several of those in the South Atlantic and Gulf States were still in progress at the close of the month. With the exception of the one in the Tallahatchie River, in Mississippi, which will be discussed in a later issue of the Monthly Weather Review, none was of much importance. In all instances the damage was slight. The floods in the Grand River in Michigan were caused by ice gorges. Table of flood stages in February 1933 [All dates in February unless otherwise specified] | River and station | Flood | | | flood
dates | | Crest | | | | | |--|----------------|-------|----------------|----------------|---------------|-------------------------|--------------------------|--|--|--| | | stage | Fron | n- | То | | Stage | Date | | | | | ST. LAWRENCE DRAINAGE Grand: Portland, Mich | Feet
12 | | 26 | 2 | 26 | Feet 12. 0 | 26. | | | | | Roanoke: Williamston, N.C | 10 | | 15 | 2 | 28 | 10. 5 | 19-27. | | | | | Mars Bluff Bridge, S.C | 17
18
10 | | 13
18
12 | | 26
28
1 | 18. 6
18. 4
11. 2 | 24.
23–26.
19, 20. | | | | | Rimini, S.C | 12 | {Jan. | 26
9 | (1) | 5 | 13. 7
15. 2 | Jan. 29.
24. | | | | | Ferguson, S.C | 12 | Jan. | 26
9 | (1) | 7 | 13. 3
13. 7 | Jan. 31.
24-27. | | | | | Savannah: Ellenton, S.C. | 14 | Jan. | 26
9 | (1) | 6 | 17. 5
19. 5 | Jan. 29.
23. | | | | ¹ Continued into March. Table of flood stages in February 1933-Continued | River and station | Flood
stage | | | flood
dates | Crest | | | | | | |--|----------------------------|-----------|------------------------------------|--|--|---|--|--|--|--| | | Stage | From- | | То | Stage | Date | | | | | | ATLANTIC SLOPE DRAINAGE—contd. | | | | | | | | | | | | Ogeechee:
Dover, Ga
Meldrim, Ga | Feet
7
9 | ļ
 | 8 | (1) | Feet
8. 1
10. 6 | 22-24.
26-28. | | | | | | Ocmulgee: Abbeville, Ga | 11 | { | 16
23 | (1) | 11.3
13.4 | 18.
27. | | | | | | Altamaha: Charlotte, Ga Everett City, Ga | 12
10 | Jan. | 28
11 | (1) | 16. 5
10. 8 | 28.
21~25. | | | | | | EAST GULF OF MEXICO DRAINAGE | | | | | | | | | | | | Apalachicola: Blountstown, Fla
Cahaba: Centerville, Ala | l | Jan.
{ | 28
8
20 | (1)
8
20 | 20. 4
23. 7
25. 0 | 25.
8.
20. | | | | | | Alabama:
Selma, Ala
Millers Ferry, Ala | 35
35 | | 22
21 | 26
(¹) | 38. 2
42. 4 | 24.
25, 26. | | | | | | Tombigbee: Aberdeen, Miss Lock No. 4, Demopolis, Ala Lock No. 3, Ala Lock No. 2, Ala Lock No. 1, Ala Lock No. 1, Ala West Pearl: Pearl River, La | 39
33
46
31
20 | { | 9
10
9
12
11
8
1 | 10
Mar. 3
Mar. 5
Mar. 3
Mar. 9 | 34. 5
49. 5
52. 4
54. 4
37. 0
25. 0
14. 1
15. 2 | 10.
22.
22.
23.
25, 26.
16, 17.
2.
28. | | | | | | MISSISSIPPI SYSTEM | | l | | | | | | | | | | Upper Mississippi Basin | | | 00 | ۔ | | ١, | | | | | | Illinois: Peru, Ill | 14 | Jan. | 8 | 20 | 14. 8
15. 4 | 4.
8. | | | | | | Ohio Basin | | ľ | 23 | Mar. 5 | 16. 5 | 24. | | | | | | Barren: Bowling Green, Ky | 20 | | 21 | 23 | | | | | | |